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Introduction 

This lecture will introduce the concepts of modeling, data assimilation and high- 
performance computing as it relates to the study of atmospheric composition. The lecture 
will work fi-om basic definitions and will strive to provide a fiamework for thinking about 
development and application of models and data assimilation systems. It will not provide 
technical or algorithmic information, leaving that to textbooks, technical reports, and 
ultimately scientific journals. References to a number of textbooks and papers will be ' 
provided as a gateway to the literature. 

The text will be divided into four major sections. 

Modeling 
Data Assimilation 
Observing System 
High-performance Computing 

Modeling 

Dictionary definitions of model include: 

A work or construction used in testing or perfecting a final product. 

A schematic description of a system, theory, or phenomenon that accounts for 
its known or inferred properties and may be used for further studies of its 
characteristics. 

_____ h r a t m o s p h e r i c m s d ~ ~ ~ t ~ ~ ~ ~ e ~ s t - i s g e n e  
of parameters, for instance, wind, temperature, water, ozone, etc., as well as either the 
knowledge or expectation of correlated behavior between the different parameters. A 
number of types of models could be developed to describe the observations. These 
include: 

Conceptual or heuristic models which outline in the simplest terms the processes 
that describe the interrelation between different observed phenomena. These 
models are often intuitively or theoretically based. An example would be the 

. tropical pipe model of Plumb and KO [ 19921, which describes the transport of 
long-lived tracers in the stratosphere. 
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Statistical models which describe the behavior of the observations based on the 
observations themselves. That is the observations are described in terms of the 
mean, the variance, and the correlations of an existing set of observations. 
Johnson et al. [2000] discuss the use of statistical models in the prediction of 
tropical sea surface temperatures. 

Physical models which describe the behahor of the observations based on first 
principle tenets of physics (chemistry, biology, etc.). In general, these principles 
are expressed as mathematical equations, and these equations are solved using 
discrete numerical methods. Good introductions to modeling include [Trenberth, 
1992; Jacobson, 1998; Randall, 20001 

In the study of geophysical phenomena, there are numerous sub-types of models. 
These include comprehensive models which attempt to model all of the relevant 
couplings or interactions in a system and mechanistic models which have one or more 
parameters prescribed, for instance by observations, and then the system evolves relative 
to the prescribed parameters. All of these models have their place in scientific 
investigation, and it is often the interplay between the different types and sub-types of 
models that leads to scientific advance. 

Models are used in two major roles. The first role is diagnostic, in which the 
model is used to determine and to test the processes that are thought to describe the 
observations. In this case, it is determined whether or not the processes are well known 
and adequately described. In general, since models are an investigative tool, such studies 
are aimed at determining the nature of unknown or inadequately described processes. 
The second role is prognostic; that is, the model is used to make a prediction. All types 
of models can be used in these roles. 

In all cases the model represents a management of complexity; that is, the 
scientist is faced with a complex set of observations and their interactions and is trying to 
manage those observations in order to develop a quantitative representation. In the case 
of physical models, which are implicitly at the focus of this lecture, a comprehensive 
model would represent the cumulative knowledge of the physics (chemistry, biology, 
etc.) that describe the observations. It is tacit, that an accurate, comprehensive physical 

m o - d ~ ~ ~ l r u v a s t - w a y - t ~ ~ r e e ~ ~ ~ ~ a t - i ~ t ~ ~ r ~ d i ~ t - t h e - ~ ~ e ~  - - - - -- - -- - -- 

While models are a scientist’s approach to manage and to probe complex systems, 
today’s comprehensive models are themselves complex. In fact, the complexity and 
scope of models is great enough that teams of scientists are required to contribute to 
modeling activities. Two consequences of complexity of models are realized in 
computation and interpretation. Comprehensive models of the Earth system remain 
outside the realm of the most capable computational systems. Therefore, the problem is 
reduced to either looking at component models of the earth system, i.e., atmosphere, 
ocean, land, cryosphere, lithosphere, or at models where significant compromises are 
taken in the representation of processes in order to make them computationally feasible. 
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More challenging, and in fact the most challenging aspect of modeling, is the 
interpretation of model results. It is much easier to build models than it is to do 
quantitative evaluation of models and observations. _ _  

In order to provide an overarching background for thinking about models it is 
useful to consider the elements of the modeling, or simulation, fiamework described in 
Figure 1. In this framework are six major ingredients. The first are the boundary and 
initial conditions. For an atmospheric model, boundary conditions are topography and 
sea Surface temperature; boundary conditions are generally prescribed fiom external 
sources of information. It is the level of prescription of boundary conditions and the 
conventions of the particular discipline that determine whether or not a model is termed 
mechanistic. 

The next three items in the figure are intimately related. They are the 
representative equations, the discrete or parameterized equations, and the constraints 
drawn from theory. The representative equations are the analytic form of forces or 
factors that are considered important in the representation of the evolution of a set of 
parameters. In general, all of the analytic expressions used in atmospheric modeling are 
approximations; therefore, even the equations the modeler is trying to solve have apriori 
errors. Generally in the construction of a model, only terms that are expected to be 
important are included in the analytic expressions; that is, the equations are scaled fiom 
some more complete representation [see Holton, 20041. The solution is, therefore, a 
balance amongst competing forces and tendencies. Most commonly, the analytic 
equations are a set of non-linear partial differential equations. 

The discrete or parameterized equations arise because it is generally not possible 
to solve the analytic equations in closed form. The strategy used by scientists is to 
develop a discrete representation of the equations which are then solved using numerical 
techniques. These solutions are, at best, discrete estimates to solutions of the analytic 
equations. The discretization and parameterization of the analytic equations introduce a 
large source of error. This introduces another level of balancing in the model; namely, 
these errors are generally managed through a subjective balancing process that keeps the 
numerical solution fiom running away to obviously incorrect estimates. 

While all of the terms in the analytic equation are potentially important, there are 
- e o n d i ~ ~ r - t i m e s e r ~ ~ - ~ ~ ~ ~ ~ b ~ ~ c ~ b e ~ e e ~ ~ ~ r ~ s ~ ~ e ~ t w ~ - t ~ s .  
An example of this is thermal wind balance in the middle latitudes of the stratosphere 
[see Holton, 20041. It is these balances, generally at the extremes of spatial and temporal 
scales, which provide the constraints drawn from theory. Such constraints are generally 
involved in the development of conceptual or heuristic models. If the modeler 
implements discrete methods which consistently represent the relationship between the 
analytic equations and the constraints drawn from theory, then the modeler maintains a 
substantive scientific basis for the interpretation of model results. 

The last two items in Figure 1 represent the products that are drawn from the 
model. These are divided into two types: primary products and derived products. The 
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. ,,----, - -  primary products are variables such as wind, temperature, water, ozone - parameters that 
are most often, explicitly modeled; that is, an equation is written for them. The derived 
products are often functional relationships between the primary products; for instance, 
potential vorticity. A common derived product is the balance, or the budget, of the 
different terms of the discretized equations. The budget is then studied, explicitly, on 
how the balance is maintained and how this compares with budgets derived directly from 
observations. In general, the primary products can be directly evaluated with 
observations and errors of bias and variability estimated. If attention has been paid in the 
discretization of the analytic equations to honor the theoretical constraints, then the 
derived products will behave consistently with the prirnary products and theory. They 
will have errors of bias and variability, but they will behave in a way that supports 
scientific scrutiny. 

In order to explore the elements of the modeling M e w o r k  described above, the 
following continuity equation for a constituent, A, will be posed as the representative 
equation. The continuity equation represents the conservation of mass for a constituent 
and is an archetypical equation of geophysical models. Brasseur and Solomon [1986] 
and Dessler [2000] provide good backgrounds for understanding atmospheric chemistry 
and transport. The continuity equation for A is: 

A is some constituent 
E is velocity + “resolved” transport, “advection” 
M is “Mixing” + “unresolved” transport, parameterization 
P is production 
L is loss 
n is “deposition velocity” 
q is emission 
H is representative length scale for n and q 
t is time 
V is the gradient operator 

A w i o n W i - b e  f o c u s e d ~ ~ - ~ ~ ~ ~ ~ ~ t i o ~ ~ ~ ~ ~ o - ~ - - ~ ~ v e - t r ~ p ~ ~ .  ---I-_ 

Figures 2 and 3 illustrate the basic concepts. On the left of the figure a mesh has been 
laid down to cover the spatial domain of interest. In this case it is a rectangular mesh. 
The mesh does not have to be rectangular, uniform, or orthogonal. In fact the mesh can 
be unstructured or can be built to adapt to the features that are being modeled. The 
choice of the mesh is determined by the modeler and depends upon the diagnostic and 
prognostic applications of the model [see Randall, 20001. The choice of mesh can also be 
determined by the computational advantages that might be realized. 

Points can be prescribed to determine location with the mesh. In Figure 2 both 
the advective velocity and the constituent are prescribed at the center of the cell. In 
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- Figure 3, the velocities are prescribed at the center of the cell edges, and the constituent is 
prescribed in the center of the cell. There are no hard and fast rules about where the 
parameters are prescribed, but small differences in their prescription can have huge 
impact on the quality of the estimated solution to the equation, i.e. the simulation. The 
prescription directly impacts the ability of the model to represent conservation properties 
and to provide the link between the analytic equations and the theoretical constraints [see 
Rood, 1987; Lin 20041. In addition, the prescription is strongly related to the stability of 
the numerical method; that is, the ability to represent any credible estimate at all. 

A traditional and intuitive approach to discretization is to use differences 
calculated across the expanse of the grid cell to estimate partial derivatives. This is the 
foundation of the finite-difference method, and finite-differences appear in one form or 
another in various components of most models. Differences can be calculated f?om a 
stencil that covers a single cell or weighted values from neighboring cells can be used. 
From a numerical point of view, the larger the stencil, the more cells that are used, the 
more accurate the approximation of the derivative. Spectral methods, which use 
orthogonal expansion functions to estimate the derivatives, essentially use information 
from the entire domain. While the use of a large stencil generally increases the accuracy 
of the estimate of the partial derivatives, it also increases the computational cost and 
means that discretization errors are correlated across large portions of the domain. 

The use of numerical techniques to represent the partial differential equations that 
represent the model physics is a straightforward way to develop a model. However, there 
are many approaches to discretization of the dynamical equations that govern geophysical 
processes [Jacobson, 1998; Randall, 20001. Given that these equations are, in essence, 
shared by many scientific disciplines, there are sophisticated and sometimes similar 
developments in many different fields. One approach that has been recently adopted by 
several modeling centers is described in Lin [2004]. In this approach the cells are treated 
as f ~ t e  volumes md piecewise continuoins functions are fit locally to the cells. These 
piecewise continuous functions are then integrated around the volume to yield the forces 
acting on the volume. This method, which was derived with physical consistency as a 
requirement for the scheme, has proven to have numerous scientific advantages. The 
scheme uses the philosophy that if the physics are properly represented, then the accuracy 
of the scheme can be robustly built on a physical foundation. In addition, the scheme, 
which is built around local stencils, has numerous computational advantages. 

- _ _  
Douglass et al. [2003] and Schoeberl et al. [2003] have demonstrated the 

improved quality that follows from implementation of the finite volume scheme. In their 
studies they investigate the transport and mixing of atmospheric constituents in the upper 
troposphere and the lower stratosphere. Through a combination of analysis of 
observations, a hierarchy of models, and the relationship to theoretical constraints, they 
demonstrate that both the horizontal and vertical transport is better represented with the 
finite volume scheme. Further, their comparisons of experiments using winds from 
several data assimilation systems to calculate transport establish the importance of 
physical consistency in the representation of budgets of the constituent continuity 
equation. 
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Data Assimilation ~ . -  . 

The definition of assimilation from the dictionary is: 

To incorporate or absorb; for instance, into the mind or the prevailing culture 

For Earth science, assimilation is the incorporation of .observational information into a 
physical model. Or more specifically: 

. 

Data assimilation is the objective melding of observed information with 
model-predicted information. 

Returning to the discussion of model types in the previous section, assimilation 
rigorously combines statistical modeling with physical modeling; thus, formally 
connecting the two approaches. Daley [ 19911 is the standard text on data assimilation. 
Cohn [ 19971 explores the theory of data assimilation and its foundation in estimation 
theory. Swinbank et al. [2003] is a collection of tutorial lectures on data assimilation. 
Assimilation is difficult to do well, easy to do poorly, and its role in Earth science is 
expanding and sometimes controversial. 

Figure 4 shows elements of an assimilation fiamework that parallels the modeling 
elements in Figure 1. The concept of boundary conditions remains the same; that is, 
some specified information at the spatial and temporal domain edges. Of particular note, 
the motivation for doing data assimilation is oftea to provide the initial conditions for 
predictive forecasts. 

Data assimilation adds an additional forcing to the representative equations of the 
physical model; namely, information from the observations. This forcing is formally 
added through a correction to the model that is calculated, for example, by [see Stajner et 
al., 20011: 

( 0 P P T  + R)x = & - OAf (2) 

& are observations of the constituent 
Af are model forecast, simulated, estimates of the constituent 
0 is the observation operator 
Pf is the error covariance function of the forecast 
R is the error covariance function of the observations 
x is the innovation that represents the observation-based correction to the 
model 

is the matrix transform operation 

6 



The observation operator, 0, is a function that maps the parameter to be assimilated onto 
the spatial and temporal structure of the observations. In its simplest form, the 
observation operator is an interpolation routine. Often, however, it is best to perform 
assimilation in observation space, and in the case of satellite observations the 
measurements are radiances. Therefore, the observation operator might include a 
forward radiative transfer calculation &om the model’s geophysical parameters to 
radiance space. While this is formally robust, in practice, it is sometimes less than 
successful because of loss of intuitiveness and computational problems. Therefore, initial 
experiments with assimilation are often most productively undertaken using retrieved 
geophysical parameters. 

The error covariance functions, Pf and R, represent the errors, respectively, of the 
information from the forecast model and the information from the observations. This 
explicitly shows that data assimilation is the error-weighted combination of information 
from two primary sources. These error covariance functions are generally not well 
known. From first principles, the error covariance functions are prohibitive to calculate. 
Hence, models are generally developed to represent the error covariance functions. 
Stajner et al. [2001] show a method for estimating the error covariances in an ozone 
assimilation system. 

Parallel to the elements in the simulation framework (Figure l), discrete 
numerical methods are needed to estimate the errors as well as to solve the matrix 
equations in Equation (2). How and if physical constraints from theory are addressed is a 
matter of both importance and difficulty. Often, for example, it is assumed that the 
incx-rements of different parameters that are used to correct the model are in some sort of 
physical balance. For instance, wind and temperature increments might be expected to be 
in geostrophic balance. However,’ in general, the data insertion process acts like an 
additional physics term in the equation and contributes a significant portion of the budget. 
This, explicitly, alters the physical balance defined by the representative equations of the 
model. Therefore, there is no reason to expect that the correct geophysical balances are 
represented in an assimilated data product. This is contrary to the prevailing notion that 
the model and observations are ‘consistent’ with one another after assimilation. 

The final two elements in Figure 4 are, again, the products. In a good assimilation 
the primary products, in general the prognostic variables, are well estimated. That is, 
b o ~ - ~ - b i a ~ r ~ c ~ ~ ~ ~ - s ~ ~ r ~ d u ~ ~ ~ Q w ~ v ~ ~ ~ ~ d ~ i v e d ~ ~ Q d u c t  s--- 
are likely to be physically inconsistent because of the nature of the corrective forcing 
added by the observations. These errors are often found to be larger than those in self- 
determining model simulations. Molod et al. [1996] and Kistler et al. [2001] provide 
discussions on the characteristics of the errors associated with primary and derived 
products in data assimilation systems. The nature of the errors described in these papers 
is consistent with errors in present-day assimilation systems. 

A schematic of an assimilation system is given in Figure 5. This is a sequential 
assimilation system where a forecast is provided to a statistical analysis algorithm that 
calculates the merger of model and observational information. In this example, errors are 
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specified based on external considerations and methods. There is a formal interface 
between the statistical analysis algorithm and the model prediction which performs a 
quality assessment of the idormation prior to the merger; this quality control algorithm 
will be discussed more fully below. The figure shows, explicitly, two input streams for 
the observations. The frst of these streams represent the observations that will be 
assimilated with the model prediction. The other input stream represents observations 
that will not be assimilated. This second stream of observations could be, for example, a 
new type of observation whose error characteristics are being determined relative to the 
existing assimilation system. The second stream might also represent an ancillary data 
set that is being used in quality control decisions. This type of monitoring function finds 
many applications, and data assimilation systems are excellent tools for determining 
anomalies in input data streams. 

In Figure 4 the products of the assimilation were classified as primary and derived 
estimates of geophysical parameters. The following classification of products describes 
the collective information fkom the data assimilation system. These are indicated in 
Figure 5 and listed below: 

Analysis: The analysis is the merged combination of model information and 
observational information. The analysis is the best estimate of the state of the 
system based on the optimization criteria and error estimates. 

Forecast/simdation: The forecast/simulation is a model run that starts fkom an 
initial condition defined by the analysis. For some amount of time this model run 
is expected to represent the state of the system with some deterministic accuracy. 
For this case the model run is a forecast. After a certain amount of time the model 
run is no longer expected to represent the particular state of the system; though, it 
might represent the average state. In this case the model run is simply a 
simulation thzt has been initialized with a realistic state estimate at some 
particular time. 

Observation minus forecast increment: The observation minus forecast increment, 
often the 0-F, gives a raw estimate of the agreement of the forecast information 
with the observation information prior to assimilation. Usually, a small 0-F 
increment indicates a high quality forecast, and 0-F increments are used as a 

exquisitely sensitive to changes in the system and are the primary quantity used 
for monitoring the stability and quality of the input data streams. Study of the 0- 
F is useful for determining the spatial and temporal characteristics of some model 
errors. 

_ _  - p r i 2 . 1 . l a r p m e a ~ ~ ~ ~ % ~ ~ ~ ~ ~ ~ - a t ~ Q ~ ~ - Q - ~ G ~ ~ ~ ~ t ~ ~ -  

Observation minus analysis increment: The observation minus analysis increment 
represents the actual changes to the model forecast that are derived from the 
statistical analysis algorithm. Therefore, they represent in some bulk sense the 
error weighted impact of the 0-F increments. If the assimilation system weighs 
the observations heavily relative to the forecast, then the observation minus 
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- -1 - -  ~ <. analysis increments will have significant differences relative to the 0-F  
increments. The opposite is also true; if the model information is weighed more 
heavily than the observational information then there will be little change to the 
0-F increments. If either of these extremes are realized the basic assumptions of 
the assimilation problem need to be reconsidered. 

As suggested earlier, the specification of forecast and model error covariances and 
their evolution with t h e  is a difficult problem. In order to get a handle on these 
problems it is generally assumed that the observational errors and model errors are 
unbiased over some suitable period of time, e.g. the length of the forecast between times 
of data insertion. It is also assumed that the errors are in a Gaussian distribution. The 
majority of assimilation theory is developed based on these assumptions, which are, in 
fact, not valid assumptions. In particular, when the observations are biased, there would 
the expectation that the actual balance of geophysical terms is different fiom the balance 
determined by the assimilation. Furthermore, since the biases will have spatial and 
temporal variability, the balances determined by the assimilation are quite complex. 
Aside fiom biases between the observations and the model prediction, there are biases 
between different observation systems of the same parameters. These biases are 
potentially correctible if there i s  a known standard of accuracy defined by a particular 
observing system. However, the problem of bias is a difficult one to address and perhaps 
the greatest challenge facing assimilation [see, Dee and da Silva, 19981 

As a fmal general consideration, there are many time scales represented by the 
representative equations of the model. Some of these time scales represent balances that 
are achieved almost instantly between different variables. Other time scales are long, 
important to, for instance, the general circulation which will determine the distribution of 
long-lived trace constituents. It is possible in assimilation to produce a very accurate 
representation of the observed state variables and those variables which are balanced on 
fast time scales. On the other hand, improved estimates in the state variables are found, 
at least sometimes, to be associated with degraded estimates of those features determined 
by long time scales. Conceptually, this can be thought of as the impact of bias 
propagating through the physical model. With the assumption that the observations are 
fundamentally accurate, this indicates errors in the specification of the physics that 
demand further research. 

. .  -mbha-d -d rmkkpac t s  in-the-impmvernmt-&weather- - - 

forecasts. In other applications the benefits of assimilation have been more dificult to 
realize. Therefore, scientists need to determine the appropriateness of assimilation or 
using assimilated data products in their studies. The list below provides goals of the 
assimilation of ozone data. These goals are examples which can be extended to the 
assimilation of other geophysical parameters. 

Mapping: There are spatial and temporal gaps in the ozone observing system. A 
basic goal of ozone assimilation is to provide vertically resolved global maps of 
ozone. 
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Short-term ozone forecasting: There is interest in providing operational ozone 
forecasts in order to predict the fluctuations of ultraviolet radiation at the surface 
of the earth Long et al., 19961. 
Chemical constraints: Ozone is important in-many chemical cycles. Assimilation 
of ozone into a chemistry model provides constraints on other observed 
constituents and helps to provide estimates of unobserved constituents. 
Unified ozone data sets: There are several sources of ozone data with significant 
differences in spatial and temporal characteristics as well as their expected error 
characteristics. Data assimilation provides a potential strategy for combining 
these data sets into a unified data set. 
Tropospheric ozone: Most of the ozone is in the stratosphere, and tropospheric 
ozone is sensitive to surface emission of pollutants. Therefore, the challenges of 
obtaining accurate tropospheric ozone measurements from space are significant. 
The combination of observations with the meteorological information provided by 
the model offers one of the better approaches available to obtain global estimates 
of tropospheric ozone. 
Improvement of wind analysis: The photochemical time scale for ozone is long 
compared with transport timescales in the lower stratosphere and upper 
troposphere. Therefore ozone measurements contain information about the wind 
field what might be obtained in multi-variate assimilation. 
Radiative transfer: Ozone is important in both longwave and shortwave radiative 
transfer. Therefore accurate representation of ozone is important in the radiative 
transfer calculations needed to extract (retrieve) information from many satellite 
instruments. In addition, accurate representation of ozone has the potential to 
impact the quality of the temperature analysis in multi-variate assimilation. 
Observing system monitoring: Ozone assimilation offers an effective way to 
characterize instrument performance relative to other sources of ozone 
observations as well as the stability of measurements over the lifetime of an 
instrument. 
Retrieval of ozone: Ozone assimilation offers the possibility of providing more 
accurate initial guesses for ozone retrieval algorithms than are currently available. 
Assimilation research Ozone (constituent) assimilation can be productively 
approached as a univariate linear problem. Therefore it is a good framework for 
investigating assimilation science; for example, the impact of flow dependent 
covariance functions. 

-- M o d ~ - a 9 B e b s e F \ r a t i o ~ a l i d a t i Q ~ ~ - - ~ o ~ ~ a s s ~ l a t i o ~ - ~ ~ ~ ~ i d e ~ ~ ~ e ~ a l -  - . 

approaches to contribute to the validation of models and observations. 

Some of the goals mentioned above can be meaningfully addressed with the 
current state of the art Others cannot. It is straightforward to produce global maps of 
total column ozone which can be used in, for instance, radiative transfer calculations. 
The use of ozone measurements to provide constraints on other reactive species is an 
application that has been explored since the 1980’s [see, Jackman et al., 19871 and 
modem data assimilation techniques potentially advance this field. The impact of ozone 
assimilation on the meteorological analysis of temperature and wind, and hence 
improvement of the weather forecast, is also possible. The most straightforward impact 
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would be on the temperature analysis in the stratosphere. The improvement of the wind 
analysis is a more difficult challenge and confounded by the fact that where 
improvements in the wind analyses are most needed, the tropics, the ozone gradients are 
relatively weak. The use of ozone assimilation to monitor instrument performance and to 
characterize new observing systems is currently possible and productive [see, Stajner et 
aZ., 20041. The improvement of retrievals using assimilation techniques to provide ozone 
first guess fields that are representative of the specific environmental conditions is also an 
active research topic. The goal of producing unified ozone data sets from several 
instruments is of little value until bias can be correctly accommodated in data 
assimilation. This final topic will be discussed more hlly below. 

There has been much written in the assimilation literature about the various 
approaches to the assimilation algorithm and the use of assimilated data sets in many 
types of applications. There has been relatively little written about the quality control of 
the observations; that is, the interface between the observations and the model predicted 
data sets. The successesor failures of data assimilation systems can however be directly 
related to decisions made in the quality control [see, Dee et aZ., 20011. A simple 
description of quality control is given in Figure 6. 

On the left side of the figure are three sources of observational information, two 
satellites and one non-satellite source. These three sources of observations might 
represent a nadir viewing temperature sounder, a limb viewing temperature sounder, and 
radiosonde temperatures. Even if perfectly accurate, each of these observing systems 
would provide different measurements because of the sampling characteristics of the 
hs t rment  Quality control of the observations might proceed as follows. Each type of 
observation is likely to come with some information about the anticipated quality of the 
data. This information might indicate whether or not an observation is far outside the 
expected value based on the previous performance of the instrument, or alternatively, that 
the instrument was in an observing mode known to have low reliability. Further 
investigation of observations that are flagged, as say, suspicious, might reveal that there 
is a region of geographical consistency; that is, a region of suspicious data. This region 
could represent a meaningful geophysical feature, perhaps a developing storm, or it might 
represent a regional contamination of the observations, perhaps clouds or an erupting 
volcano. 

- I f t h e - f i z v e s t i g a t t i o n f ~ ~ b s ~ ~ - a t ~ ~ n ~ ~ g g e s ~ s - t ~ a ~ ~ ~ b s ~ ~ a t i o ~ s - m i g h ~ ~ o f  
geophysical interest, then intercomparison with other types of observations can confirm 
this suggestion. Since the different types of observations might have different 
environmental sensitivities, the identification of a regional anomaly in all of the 
observation types would add weight to favor the inclusion of the suspicious data in the 
assimilation. Finally, the model prediction can be brought into the decision making 
process. The model is an estimate of the projected value of the observation, and the 
observation minus forecast information is a sensitive indicator of information. If the 
model suggests there is a developing storm, then inclusion of the data is likely to better 
represent the forecast of that storm. If the model does not show a storm, but all three 
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types of observations suggest that there is a storm, then the analysis will reflect the storm, 
and an otherwise missed feature will be correctly forecast. 

~ 

. Quality control decisions are difficult and can have significant impact on the 
assimilation quality [Dee ut al., 20011. It is intuitive that a handful of observations taken 
near clouds that represent a real developing storm will have much more impact than 
additional observations in clear skies where persistence is expected. In a scientific 
investigation of the data system, the data rejected by the quality control demand M e r  
investigation. They could reflect an instrument malfunction or an operator or 
transmission error. Another possibility is that the field of view is contam*ated by a 
cloud, or perhaps a volcanic eruption has been detected. Finally, systematic rejection of 
data might suggest that the assimilation system is drifting because the error covariances 
are not robustly specified, or that a new geophysical phenomenon, perhaps a trend, is 
being measured. 

Figure 7 shows an example fiom an assimilation of ozone data wargan et al. 
20051. In this example, there .are two satellite instruments, the Solar Backscattered 
Ultraviolet/2 (SBUV) and the Michelson Interferometer for Passive Atmospheric 
Sounding (MIPAS). S B W  is a nadir sounder and measures very thick layers with the 
vertical information in the middle and upper stratosphere. MIPAS is a limb sounder with 
much finer vertical resolution and measurements extending into the lower stratosphere. 
SBUV also measures total column ozone, which is assimilated in all experiments. The 
results from three assimilation experiments are shown through comparison with an 
ozonesonde profile. Ozonesondes were not assimilated into the systems; therefore, these 
dzta provide m independent measure of performance. 

There are several attributes to be noted in Figure 7. The quality of the MIPAS- 
only (+ S B W  total column) assimilation is the best of those presented. This suggests 
thzt ~e verticzl resolution of MIPAS instnunent is having a large impact. Even though 
the MIPAS observations are assimilated only above 70 hPa, the assimilation captures the 
essence of the structure of the ozone profile down to 300 hPa. This indicates that the 
model information in the lower stratosphere and upper troposphere is geophysically 
meaningful. Further, the model is effectively distributing information in the horizontal 
between the satellite profiles. The comparison with the SB W-only (+ S B W  total 
column) assimilation shows that the thick-layered information of the SBUV observations, 

well. This impacts the quality of the lower stratospheric analysis as the column is 
adjusted to represent the constraints of the total ozone observations. Finally, fkom first 
principles, the combined SBUV and MIPAS assimilation might be expected to be the 
best; this should have the maximum amount of information. This is not found to be the 

- - e ~ e ~ ~ m ~ a t t i o ~ ~ t h ~ m ~ d ~ l - ~ ~ o ~ a ~ ~ n ~ o e s - n o t - r ~ p r e s ~ ~ t - t h ~ ~ z ~ n ~ ~ e a k - v ~ - - ~  

case, and suggests that the weights of the various error covariances and the use of the 
observations can be improved. The optimal balance of nadir and limb observations is not 
straightforward, and these experiments reveal the challenges that need to be addressed 
when multiple types of instruments are used in data assimilation. 
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The Observing System 

The example of ozone assimilation discussed in Figure 7 hints at the attention that 
needs to be paid to the characteristics of the instruments in the observing system. There 
are questions of accuracy and bias between different observations of the same parameter. 
Similarly, there are questions of how different instruments measure the variability of 
geophysical parameters. When different, but correlated, parameters are measured, for 
example, ozone and temperature, there is the question of how measurement errors fit into 
the correlated behavior of the parameters. 

Data assimilation brings yet another level of attention to the observations; namely, 
the specific characteristics of the observing system: How do the footprints of two 
instruments impact their use? -What is depth of the averaging kernel? How are limb 
scanning and nadir measurements used together? How are sparse, high quality localized 
observations used? Should dense observations be sampled or averaged prior to use? 
How is information from integrated quantities, such as outgoing longwave radiation, 
used? One approach to answering these questions is to transform the model variables 
into the same space as the observations through the observation operator (See Equation 
2). As noted, above, the rigor of this strategy is often challenged by the reality of the 
implementation and the interpretation of the problem so that the approach is not 
straightforward or successful. a 

The observational data used in data assimilation are often broken into three 
categories, listed below: 

Conventional Data: Conventional data are those data that are, in principle, from 
the pre-satellite era. More generally, conventional data are non-satellite data. 
These data include surface observations and balloon soundings, as well as ship 
and aircraft observ&ions. Many of these data are collected operationally, and 
they are a critical part of meteorological (and oceanographic and land-surface) 
assimilation systems. There are also data collected in research missions that are 
of exceptional quality that find their use in data assimilation, often as independent 
validation data. Though non-satellite data might be classified as conventional, the 
optimal use of these observations requires careful attention to the details of the 
data systems. Lait [ZOQZ] provides an interesting examination of the radiosonde 

- - - - aetworhd-the-impact-~at-h~ent~fi-emdi-fferen&mm~ies-md--- - - 

manufacturers have on the quality of the analysis. 

Operational Satellite Data: Operational satellite data are those data taken 
routinely to support national weather prediction centers. These data are taken and 
processed in real-time and distributed around the world. Because of these real- 
time requirements, there are limitations on the resolution of the observations, the 
size of the data sets, and the sophistication of retrieval algorithms and forward 
models. Historically, the calibration and stability of operational satellites has 
been of secondary importance; they are essentially calibrated by the conventional 
data as communicated through the assimilation system. 

- -___ 
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Research Satellite Data: Research satellite data are those instruments that have 
been launched for scientific exploration or technology proof of concept. Research 
satellites measure parameters that have not been measured before or measure 
parts of the environment that have been adequately sampled. For example, 
measurements of carbon dioxide from space would be a new, important 
measurement; measurements of water and temperature in the planetary boundary 
layer would resolve these parameters in a region of especial importance. 
Research satellites might also seek to resolve traditional satellite measurements, 
temperature or ozone, with higher accuracy, higher spectral resolution, or higher 
horizontal and vertical resolution than operational satellites. 

- .  - 

The entire suite of observations must be considered in a comprehensive data 
assimilation activity. Even if a research group is considering the impact of a particular 
instrument on a particular problem, usually a foundational data assimilation system is 
required that adequately considers the primary variables from the conventional and 
operational satellite data systems. 

Though small in number, in meteorological data assimilation the conventional 
data are very important to the quality of the analysis and the forecast. This is perhaps due 
to the high quality of these observations as well as a good knowledge of the error 
characteristics. Alternatively, the assimilation systems might be implicitly tuned to these 
observations because of their long heritage and the legacy of adding new data types onto 
the pre-existing data system. Scientific investigation and re-investigation of the existing 
conventional and operational data systems would be an interesting and potentially 
productive research activity. 

By shear quantity, the operational satellite data far outnumber the conventional 
data. The satellite data assures high quality global analyses, and satellite data have been 
essential to the continual improvement of weather forecasts. Research satellite data not 
only improve the quality of analyses relative to the pre-existing data system, but extend 
the analysis to new parameters and new domains; for instance, constituents and 
chemistry, land-surface, ocean prediction, etc. Because of the great cost of research 
instruments, there is increasing use of research observations at operational centers to 
assure that the research instruments benefit society. 

~ _ _  

The use of research satellites in operation applications greatly increases the 
complexity of the assimilation process. For many years conventional data and 
operational satellites worked under tight conventions that assured both common data 
formats and a small number of data centers that supplied all of the nations of the world. 
However, with the use of research observations, centers and scientists must interact with 
many specialized data processing organizations and use a multitude of data formats. In 
addition, both the operational and research satellites are contributing to a vast increase in 
the number of available observations. This increase in the number of observations, 
projected to be as much as six orders of magnitude between the years 2000 and 2010, will 
overwhelm data systems and computational capabilities unless new techniques are 
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developed for the selection and use of data to be assimilated. Data usage provides, yet 
another, major challenge and is the focus of much of the research and development at 
operational centers. 

An accurate operational data assimilation system provides the ideal interface 
between scientists and observing systems. There are many possibilities for developing,an 
adaptive observing system - i.e. a tunable sensor web. In fact, such a notion provides one 
of the strategies for addressing the computational challenges of the projected enormous 
increase in data volume. The data assimilation system could target which of the 
observations from the satellites might be expected to have the greatest impact on a 
particular application, e.g. the forecast. Then only those data might be selected for 
evaluation or retrieval and possible inclusion in the data assimilation. In the future, it 
might be possible to direct the satellite to particular parts of the Earth and to target and 
take, only, those observations expected to have the greatest impact. 

There are two natural places for the data assimilation system to provide interfaces 
to an adaptive observing system (see Figure 5). The first is the forecast, where particular 
features might be identified several hours or days in advance, then targeted. The second 
is with the observation minus forecast (0-F) increments. Large increments indicate 
places where the expected values from the forecast agree poorly with the observations. 
There are many possible reasons for disagreement, and one possibility is a region of high 
uncertainty, perhaps due to a poorly simulated developing system. Extra retrievals or 
targeted observations from any data platform could verify or refute the existence of such 
a developing system. 

Finally, there are two basic strategies of observing. One is targeted observing of 
features or processes of special interest. The other is sampling or surveying of the entire 
domain. Both of these strategies are essential ingredients of scientific investigation. It is 
not a matter of one or the other. Robust assimilation depends on the existence of an 
observing system that adequately samples the domain. With this foundation, the idea of 
targeted observations to investigate those features that are not adequately represented by 
routine sampling makes sense. 

High-performance Computing 
- __  _ _  _ _  -. - - - _- -- - _ _  ___ 

Two aspects of computing will be discussed. First, the characteristics of the 
computational problem that distinguish Earth-science modeling and assimilation will be 
discussed. Second, the attributes that influence the increasing need for computational 
resources will be discussed. 

The dictionary definition of a computer is: 

A device that determines a result by mathematical or logical operations. 

15 
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High-performance computing describes a niche of computing that is associated with 
those platforms able to address the most demanding calculations. Since all aspects of 
computational technology (processor speed, memory, storage, network speed, etc.) show 
an exponential increase in capability as a function of time, the technical specifications of 
high-performance computing is also a function of time. High-performance computing is 
also called supercomputing and high-end computing PAS,  20051. 

There are a number of potential definitions or descriptions for high performance 
computing. These include: 

Computing that is 1 - 2 orders of magnitude beyond that available fiom the state- 
of-the-art desktop environment, or alternatively, beyond that which can be 
acquired by a well funded principal investigator. 

“The class of fastest and most powerful computers available,” fiom Landau and 
Fink [1993] 

There are two important attributes which are common to applications requiring high- 
performance computers. The first is that multiple computational processors must be 
gathered together and made to operate on a single image of the application software in 
order to achieve acceptable time to solution. Current practices in high-performance 
computing centers would suggest that applications that require approximately 64 
processors on a single job would be t h e d  high-performance. The second attribute is 
that special attention must be paid to the management of memory during the run time of 
the application. 

These attributes highlight that high-performance computing is not simply an issue 
of hardware, but one also of software. In order to make effective use of a high- 
performance computer the scientist must have high-performance software. High- 
performance software must be able to scale to multiple processors; that is, the software 
must be able to utilize additional processors efficiently. As additional processors are 
added, the efficiency of each added processor is reduced because of communications 
overhead. There is a point at which adding more processors does little to increase the 
performance of the application. At the heart of efficient scaling is the management of 
memory. If the information needed by the processors can be kept at ready access to the 

- ~ ~ ~ c e s s o ~ - ~ e n ~ f ~ ~ i e n ~ c ~ ~ ~ c ~ -  b e m a i n t a i n e & T ~ u g g e s ~ ~ ~ m e m o l y -  _-- 
bandwidth, that is, how fast does information transfer fiom memory to the processor is an 
important aspect of a high-performance computer. In many applications that involve 
fluid flow, the physics of the problem require that information fi.om one processor be 
communicated to other processors. This provides a formidable challenge to the scientific 
programmer, which is specifically related to the memory architecture of the hardware. 
This brings the need to add specialized computer programmers to the teams that aspire to 
comprehensive modeling and data assimilation activities. NAS [200 13 provides an 
excellent examination of the problems writing scaleable software for climate models and 
the interaction of hardware and software. 
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There are two competing approaches by computer manufacturers to build high- 
performance computers. The frrst is to build specialized platforms that are anchored 
around custom processors, custom memory architecture, and custom communication 
interconnects amongst the processors. This adds siflcant cost to the computational 
platform. Since high-performance computing is a small part of the market, these tightly 
integrated platforms do not provide cost-performance numbers that appeal to the majority 
of the market. The second strategy, therefore, is to build high-performance computers 
out of components that are commercially available. This takes advantage of the 
exponential growth of increasing component capability. However, this requires that the 
computer companies build the environment that connects these components together - 
components that have not generally been developed to work together. This, again, adds 
significant cost to the computational platform. Further, this second approach pushes 
more of the work to the scientific programmer developing high-performance software. 
The issues of high-performance computing, its role in science, and their link to market 
factors are discussed in NAS [2005]. 

The need for high-performance computing is driven by both the requirement that 
scientific investigation requires a certain level of computational completeness to be 
productive and the requirement that the time to solution allows the products of the 
computation to be useful in their application. The workload suggested by these 
requirements falls into two natural categories - capability computing and capacity 
computing. These are described in Figure 8. Capability is defined by the maximum 
number of processors that can be focused, efficiently, on a single application. Capability 
is generally driven by a demand for increasing realism and comprehensiveness in a 
calculation, or a requirement that a product be produced in a given time segment (Le., 
real-time requirements). Capacity generally describes the execution of many applications 
that individually do not require highest capability. An example of capability computing 
would be a high-resolution, deterrninistic weather forecast; an example of capacity 
computing would be an ensemble of low-resolution forecasts to develop probabilistic 
information. Both capability and capacity computing are important to Earth-science 
modeling and assimilation. Sometimes, however, scientists are limited in capability 
experiments because of the expense and difficulty of writing high-performance software. 

A heuristic example that demonstrates the communication issues of high- 
performance computing can be made from consideration of a group of people who need 

- t ~ ~ ~ t : ~ ~ a n s a e i i o n e ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ i r ~ ~ s a G t i ~ - ~ ~ ~ u t  
negotiation with other people, for instance, buying their own lunch, then a group of 
people is well served by having a number of cashiers. However, if the group ordered 
their lunches together and need to negotiate with each other over the amount that each 
individual needs to pay, and further, requires the cashier to participate in the execution of 
their negotiation, then having more than one cashier is of little benefit. The 
computational problem is, therefore, defmed not only by the number of transactions 
(calculations), but also by the amount of negotiation (communications) required. Figure 
9 uses the format of Figures 2 and 3 to illustrate this point for the modeling of a 
hurricane. Assuming that the grid points are now associated with a certain subset of the 
processors (Figure 8), then information from one processor is needed from other 
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processors to determine the internal dynamics of the hurricane. In addition, the path that 
the hurricane follows connects information from a series of grid points and processors. 
In is intuitive that the choice of grid, the specification of variables, and the selection of a 
discretization routine will impact the computational performance. While this example 
demonstrates the need for communications in a particular problem, other applications, for 
example land-surface assimilation, might only have weak requirements for 
communications. Therefore, loosely connected computation platforms might be 
adequate. 

Finally, there are several aspects of the modeling and assirnilation problem that 
stress computational systems and push capability requirements. The common ones in 
modeling are increased resolution, improved physics, inclusion of new processes, and 
integration and concurrent execution of Earth-system components that are normally run ' 

separately - that is, coupled models. Often, real-time needs define capability 
requirements. When considering data assimilation the computational requirements 
become much more challenging. Often the computational characteristics of the statistical 
analysis are defined as a function of the number and distribution of the observations; 
therefore, the increasing number of observations could be computationally crippling. 
Advanced assimilation techniques often involve iterative cycling between the model and 
the statistical analysis routine, increasing the computational burden. The increasing 
diversity of data sources and the use of research observations in assimilation place 
tremendous demands on networks and data systems. The computational details of 
modeling, statistical analysis, and quality control are quite different. As with the 
construction of a state-of-the art model or data assimilation system, balanced cost 
consideratinns need to be made in the computational aspects of the problem - both 
software and hardware. This requires the scientist and the science manager to constantly 
consider the tension between the reduction of the problem to its component parts and the 
unification of those parts into a system. 

Summary 

This lecture introduced the fundamental ideas that a scientist neecls to understand 
when building or using models in Earth-science research. Rather than focusing on 
technical aspects of modeling and data assimilation, the lecture focused on a number of 
~ ~ r ~ - ~ g - ~ ~ ~ ~ s ~ - h ~ s ~ ~ n ~ ~ € ~ s ~ ~ d ~ ~ ~ d ~ ~ ~ w - i l l - a l ~ ~ w - ~ ~ ~ ~ d e l ~ a n d - m ~ d e l  
products to be used in quantitative, data-driven research. This goes beyond simple 
comparison of models and observations and using their similarity as a measure of worth. 

With regards to stand-alone models in the absence of data assimilation, it was 
emphasized that the underlying physics should be well represented. This requires special 
attention to the physics as using accurate numerical techniques does not guarantee 
physical consistency. Data assimilation was introduced as adding a forcing term to the 
model that is a correction based on observations. This additional forcing term changes 
the balance of forces. Therefore, budgets calculated from assimilated data are not 
expected to be robust for geophysical applications. For both modeling and data 

18 



. . . . .  . . . . . .  - . . . - . _ _  - . - . . - . . . . . .  .............. 
. .. ......... -. .... _- ._ - . . . . . . . .  

. -  . .  ~. 

. .  - 

. .  
. . . . . . . . . . . .  . . . . .  . 

~ . . . . .  __ - -  
.. 

assimilation, it is much more difficult to quantitatively analyze and interpret the results 
than it is to develop new modules and components. Few scientists do this analysis well, 
and students are challenged to learn existing techniques and to develop new techniques. 

-With regard to data assimilation, the importance of the observing system was 
emphasized. This requires monitoring of the observing system and vigorous attention to 
quality control. It also requires attention to the details of the instrumentation, for 
example, the observational technique. Scientific investigation of the observing system 
was encouraged. The importance of bias in data assimilation was also discussed. The 
presence of bias lies at the foundation of the physical consistency of assimilated data sets. 
While data assimilation has had a number of outstanding successes, these issues of bias 
and physical consistency require scientists to consider the appropriateness of data 
assimilation to their particular problem. 

The attention to the observing system brought out the changing nature of the 
observing system. Specifically, the observing system is becoming more diverse and data 
volumes are increasing rapidly. This requires the efforts of many scientists and new 
computational techniques to utilize these new observations effectively. Data assimilation 
systems provide a natural link between scientists and the observing system, including the 
possibility of adaptive observing systems. 

Finally, the computational aspects of modeling and assimilation were discussed. 
Comprehensive activities that address the entire Earth system remain beyond the most 
capable computers. Special challenges come from the fact that many computations are 
required (transaction) and communication is required between the computations 
(negotiation). In addition the computational issues of faced when embracing the data 
systems are often different than those usually considered in stand-alone modeling 
activities. Computational considerations must be incorporated in the development of 
data assimilation systems, and again, they need to also address issues of physical 
consistency. 

The end-to-end data assimilation system must have balance. There is little benefit 
developing components to a high state of accuracy or performance if there are other 
weaknesses in the system. Experience suggests that fitture progress will be most 
effectively realized through the use of new data types and improving the representation of 

fimdamental way. If the bias problem is not addressed, then there are intrinsic limitations 
to the problems appropriately addressed by data assimilation. 
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